Search results

1 – 6 of 6
Article
Publication date: 29 July 2019

Rajesh Nimmagadda, Godson Asirvatham Lazarus and Somchai Wongwises

The purpose of this study is to numerically investigate the effect of jet impingement, magnetic field and nanoparticle shape (sphericity) on the hydrodynamic/heat transfer…

Abstract

Purpose

The purpose of this study is to numerically investigate the effect of jet impingement, magnetic field and nanoparticle shape (sphericity) on the hydrodynamic/heat transfer characteristics of nanofluids over stationary and vibrating plates.

Design/methodology/approach

A two-dimensional finite volume method-based homogeneous heat transfer model has been developed, validated and used in the present investigation. Three different shapes of non-spherical carbon nanoparticles namely nanotubes, nanorods and nanosheets are used in the analysis. Sphericity-based effective thermal conductivity of nanofluids with Brownian motion of nanoparticles is considered in the investigation. Moreover, the ranges of various comprehensive parameters used in the study are Re = 500 to 900, St = 0.0694 to 0.2083 and Ha = 0 to 80.

Findings

The hydrodynamic/heat transfer performance of jet impingement in the case of vibrating plate is 298 per cent higher than that of stationary plate at Re = 500. However, for the case of vibrating plate, a reduction in the heat transfer performance of 23.35 per cent is observed by increasing the jet Reynolds number from 500 to 900. In the case of vibrating plate, the saturation point for Strouhal number is found to be 0.0833 at Re = 900 and Ha = 0. Further decrement in St beyond this limit leads to a drastic reduction in the performance. Moreover, no recirculation in the flow is observed near the stagnation point for jet impingement over vibrating plate. It is also observed that the effect of magnetic field enhances the performance of jet impingement over a stationary plate by 36.18 per cent at Ha = 80 and Re = 900. Whereas, opposite trend is observed for the case of vibrating plate. Furthermore, at Re = 500, the percentage enhancement in the Nuavg values of 3 Vol.% carbon nanofluid with nanosheets, nanorods and nanotubes are found to be 47.53, 26.86 and 26.85 per cent when compared with the value obtained for pure water.

Practical implications

The present results will be useful in choosing nanosheets-based nanofluid as the efficient heat transfer medium in cooling of high power electronic devices. Moreover, the obtained saturation point in the Strouhal number of the vibrating plate will help in cooling of turbine blades, as well as paper and textile drying. Moreover, the developed homogeneous heat transfer model can also be used to study different micro-convection phenomena in nanofluids by considering them as source terms in the momentum equation.

Originality/value

Impingement of jet over two different plate types such as stationary and vibrating is completely analyzed with the use of a validated in-house FVM code. A complete investigation on the influence of external magnetic field on the performance of plate type configuration is evaluated. The three fundamental shapes of carbon nanoparticles are also evaluated to obtain sphericity based hydrodynamic/heat transfer performance of jet impingement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 March 2021

Iman Mazinani, Mohammad Mohsen Sarafraz, Zubaidah Ismail, Ahmad Mustafa Hashim, Mohammad Reza Safaei and Somchai Wongwises

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges…

Abstract

Purpose

Two disastrous Tsunamis, one on the west coast of Sumatra Island, Indonesia, in 2004 and another in North East Japan in 2011, had seriously destroyed a large number of bridges. Thus, experimental tests in a wave flume and a fluid structure interaction (FSI) analysis were constructed to gain insight into tsunami bore force on coastal bridges.

Design/methodology/approach

Various wave heights and shallow water were used in the experiments and computational process. A 1:40 scaled concrete bridge model was placed in mild beach profile similar to a 24 × 1.5 × 2 m wave flume for the experimental investigation. An Arbitrary Lagrange Euler formulation for the propagation of tsunami solitary and bore waves by an FSI package of LS-DYNA on high-performance computing system was used to evaluate the experimental results.

Findings

The excellent agreement between experiments and computational simulation is shown in results. The results showed that the fully coupled FSI models could capture the tsunami wave force accurately for all ranges of wave heights and shallow depths. The effects of the overturning moment, horizontal, uplift and impact forces on a pier and deck of the bridge were evaluated in this research.

Originality/value

Photos and videos captured during the Indian Ocean tsunami in 2004 and the 2011 Japan tsunami showed solitary tsunami waves breaking offshore, along with an extremely turbulent tsunami-induced bore propagating toward shore with significantly higher velocity. Consequently, the outcomes of this current experimental and numerical study are highly relevant to the evaluation of tsunami bore forces on the coastal, over sea or river bridges. These experiments assessed tsunami wave forces on deck pier showing the complete response of the coastal bridge over water.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 August 2019

Iman Rashidi, Lioua Kolsi, Goodarz Ahmadi, Omid Mahian, Somchai Wongwises and E. Abu-Nada

This study aims to investigate a three-dimensional computational modelling of free convection of Al2O3 water-based nanofluid in a cylindrical cavity under heterogeneous heat…

Abstract

Purpose

This study aims to investigate a three-dimensional computational modelling of free convection of Al2O3 water-based nanofluid in a cylindrical cavity under heterogeneous heat fluxes that can be used as a thermal storage tank.

Design/methodology/approach

Effects of different heat flux boundary conditions on heat transfer and entropy generation were examined and the optimal configuration was identified. The simulation results for nanoparticle (NP) volume fractions up to 4 per cent, and Rayleigh numbers of 104, 105 and 106 were presented.

Findings

The results showed that for low Ra (104) the heat transfer and entropy generation patterns were symmetric, whereas with increasing the Rayleigh number these patterns became asymmetric and more complex. Therefore, despite the symmetric boundary conditions imposed on the periphery of the enclosure (uniform in Ɵ), it was necessary to simulate the problem as three-dimensional instead of two-dimensional. The simulation results showed that by selecting the optimal values of heat flux distribution and NP volume fraction for these systems the energy consumption can be reduced, and consequently, the energy efficiency can be ameliorated.

Originality/value

The results of the present study can be used for the design of energy devices such as thermal storage tanks, as both first and second laws of thermodynamics have been considered. Using the optimal design will reduce energy consumption.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2019

Saeed Aghakhani, Behzad Ghasemi, Ahmad Hajatzadeh Pordanjani, Somchai Wongwises and Masoud Afrand

The purpose of this study is to conduct a numerical analysis of flow and heat transfer of water–aluminum oxide nanofluid in a channel with extended surfaces in the presence of a…

Abstract

Purpose

The purpose of this study is to conduct a numerical analysis of flow and heat transfer of water–aluminum oxide nanofluid in a channel with extended surfaces in the presence of a constant magnetic field. The channel consists of two parallel plates and five obstacles of constant temperature on the lower wall of the channel. The upper wall and the inlet and outlet lengths of the lower wall are insulated. A uniform magnetic field of the magnitude B0 is located beneath the obstacles. The nanofluid enters the channel with a uniform velocity and temperature, and a fully developed flow leaves the channel.

Design/methodology/approach

The control volume-based finite difference and the SIMPLE algorithm were used for numerical solution. In addition to examining the effect of the Reynolds number, the effects of Hartman number, the volume fraction of nanoparticles, the height of obstacles, the length of obstacles and the distance between the obstacles were investigated.

Findings

According to the results, the heat transfer rate increases with an increasing Reynolds number. As the Hartmann number increases, the heat transfer rate increases. The heat transfer rate also increases with an increase in the volume fraction of nanoparticles. The mean Nusselt number is reduced by an increasing height of obstacles. An increase in the distance between the obstacles in the presence of a magnetic field does not have a significant impact on the heat transfer rate. However, the heat transfer rate increases in the absence of a magnetic field, as the distance between the obstacles increases.

Originality/value

This paper is original and unpublished and is not being considered for publication elsewhere.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 August 2019

Mikhail Sheremet, Teodor Grosan and Ioan Pop

This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism.

Abstract

Purpose

This paper aims to study the magnetohydrodynamic (MHD)-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganism.

Design/methodology/approach

The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing and anticipated improved stability of the nanofluid. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model.

Findings

It has been found that the Hartmann number suppresses the heat and mass transfer, while the cavity and magnetic field inclination angles characterize a non-monotonic behavior of the all considered parameters. A rise of the Hartmann number leads to a reduction of the influence rate of the magnetic field inclination angle.

Originality/value

The present results are original and new for the study of MHD-free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2021

Abdelraheem M. Aly, Noura Alsedais and Hakan F. Oztop

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection…

Abstract

Purpose

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection caused by a rotating circular cylinder with paddles within a square cavity filled by a nanofluid.

Design/methodology/approach

The cavity is saturated by two wavy layers of non-Darcy porous media with a variable amplitude parameter. The embedded circular cylinder with paddles carrying T_h and C_h is rotating around the cavity center by a uniform circular velocity.

Findings

The lineaments of nanofluid velocity and convective flow, as well as the mean of Nusselt and Sherwood numbers, are represented below the variations on the frequency parameter, amplitude parameter of the wavy porous layers, Darcy parameter, nanoparticles parameter, Hartmann number and Ryleigh number. The performed simulations showed the role of paddles mounted on circular cylinders for enhancing the transmission of heat and mass within a cavity. The wavy porous layers at the lower Darcy parameter are playing as a blockage for the nanofluid flow within the porous area. Increasing the concentration of the nanoparticles to 6% reduces the maximum flow speed by 8.97% and maximum streamlines |ψ|max by 10.76%. Increasing Hartmann number to 100 reduces the maximum flow speed by 65.83% and |ψ|max by 75.54%.

Originality/value

The novelty of this work is to examine the effects of an inclined magnetic field and rotating novel shape of a circular cylinder with paddles on the transmission of heat/mass in the interior of a nanofluid-filled cavity saturated by undulating porous medium layers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 6 of 6